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CARGO incubation project

n Computational Topology for Exploring Time-
varying Volume Data
– Jarek Rossignac, Georgia Tech
– Jack Snoeyink, UNC Chapel Hill
– Valerio Pascucci, LLNL
– Peter Lindstrom, LLNL

n Thesis: Computed topological structure can 
provide global context for exploring large 
data sets from scientific simulations

n Goal: prototype tool for visualizing iso-
surfaces in time-varying volume data
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Applying computational topology

n Illustrating our thesis: contour trees in 3D
n Time-varying volume visualization

– Sample data sets: scientific & eng. simulation
– Prototype interface: contour spectra & iso-surfaces

n Pentatope meshes
– A data structure supporting iso-surfaces 
– Implementing the incremental flip algorithm

• Arithmetic complexity
• Handling degeneracies
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Level sets in density data

n Many technologies 
give density samples: 
f(p) on a 3-D lattice.

n Define Level Sets
L(v)={p | f(p) = v}.
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Level sets in density data

n Many technologies 
give density samples: 
f(p) on a 3-D lattice.

n Define Level Sets
L(v)={p | f(p) = v}.

n Define Contour as a 
connected component 
of the level set.
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Marching cubes
+ +

+

+ +

–

-

n Check every cube,
n If it hits surface, make 

portion of the level set.
n 14-16 cases

n Lorensen & Cline 87, Marching cubes
n Nielsen & Hamann 91, fix ambiguities
n Van Gelder & Williams 92, octrees
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Marching
tetrahedra

+

+ +

–

-

n An easy variant on MC
n Removes ambiguities
n Subdivide cubes into 5 to 

24 tetrahedra [CMS01]

n Or use an irregular mesh & 
detail-dependent resolution

+

+
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Contour following
+ +

+

+ +

–

-

n Can follow the contour 
if we know a start point.

n How to find start point?

n Shinagawa et al. 91, extreme graph
n Cignoni et al. 95, interval tree
n Shen & Johnson 96, span space
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Morse theory & Contour trees

n Karron et al 95, digital Morse theory
n Bajaj et al 97–99, seed sets
n Van Kreveld et al. 97, 2-D contour tree
n Tarasov & Vyalyi 98, 3-D contour tree
n Carr et al 00, n-D contour tree
n Edelsbrunner, Harer et al. 01-
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Evolution of level sets
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Evolution of level sets

Contours appear,merge, 
split, & vanish

Contour tree
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Some references

n Lorensen & Cline 87, Marching cubes
n Nielsen & Hamann 91, fix ambiguities
n Shinagawa et al. 91, extreme graph
n Van Gelder & Williams 92, octrees for isosurf.
n Shen & Johnson 96, span space
n Cignoni et al. 97, interval trees
n Van Kreveld et al. 97, 2-D contour tree
n Tarasov & Vyalyi 98, 3-D contour tree
n Carr et al. 00, n-D contour tree, simpler



May 2002 CARGO

Building contour trees without 
constructing all level sets

n Build join and split trees
n Merge to form contour tree
n Works in all dimensions...
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The join tree

n Represents set  
{p | f(p) >= x}

n Can be computed 
w/out the surface 
of the level set.
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Join tree construction

n Sort data by ò value
n Maintain union/find for 

comp. of {p | f(p) >= x}
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Join tree construction

n Sort data by ò value
n Maintain union/find for 

comp. of {p | f(p) >= x}
n O(n+ t·a(t)) after sort
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The split tree

10

3

1 2

n Represents the set 
{p | f(p) <= x}

n Reverse join tree 
computation
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Merge join and split trees

n A four step process…
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1. Add nodes from other tree

n Nodes have correct up degree in the join tree
& correct down degree in the split tree.
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2. Identify leaves

n A leaf in one tree, with up/down degree < 1 in 
other tree

7 8 9 10

5
6

4

1

7 8 9 10

5
6

4

3

1 2

3

2



May 2002 CARGO

3. Add to contour tree

n A leaf in one tree, with up/down degree < 1 in 
other tree
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3. Add to contour tree
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3. Add to contour tree
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3. Add to contour tree

n Note that 4 can not be added,
but any of 7, 8, 9, or 10 can.
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3. Add to contour tree

n The merge time is proportional to the tree 
size; much smaller than the data
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4. Ends with Contour tree
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Advantages
n Doesn’t need iso-surface 

to build contour tree
n Merge is simple & uses a 

subset of points
n Tree gives seed sets, 

contour spectra [BPS97], 
& flexible contours [CS02]
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Flexible contouring

n Threshold diff. areas at diff. values
n Guided by the Contour Tree
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Applying computational topology

n Illustrating our thesis: contour trees in 3D
n Time-varying volume visualization

– Sample data sets: scientific & eng. simulation
– Prototype interface: contour spectra & iso-surfaces

n Pentatope meshes
– A data structure supporting iso-surfaces 
– Implementing the incremental flip algorithm

• Arithmetic complexity
• Handling degeneracies
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4-D Simulation Data Sets

What tools can we provide to suggest
when & where to look 

in large simulation data sets?
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4-D Simulation Data Sets

n Samples from pressure p = f(x,y,z,t).
n Level sets defined by two parameters:

L(P, T) = { (x,y,z) : P = f(x,y,z,T) }

n Consider some examples…
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Supersonic flow

n Introduced into still 
medium to study 
Helmholz instability

n Density of tracer
n 256 x256 x256 x100
n 1680 MB
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Pulsed flow 

n 104 x 129 x 129 x 150 = 1040 MB
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Combustion simulation

n Suresh 
Menon 
GATech

n 110x64x81 
x 20 x 7

n 320 MB 
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4-D Simulation Data Sets

n Samples from pressure p = f(x,y,z,t).
n Level sets defined by two parameters:

L(P, T) = { (x,y,z) : P = f(x,y,z,T) }

n Partition the data dimensions
– Viewing volume (x, y, z)
– Control plane (p, t)
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Viewing volume & control plane
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Comparing control planes

ï Supersonic 
flow data set

Pulsed flow
data set ð
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Water and Oil in gravel soil
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Video of Example Data Sets
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A geometric basis: pentamesh

n Mesh domain with pentatopes (4-simplices)
– Expensive, but supports refinement

n Isosurfaces from pentatope meshes
– graph structure [network topology]
– connectivity summary [β0 (t,p)]
– contour following [seeds(t,p)]
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Isosurfaces from pentatopes

n Mesh of 5-simplices  
are 4d surface in 5d:
– Pentatopes (4d)
– Tetrahedra (3d)
– Triangles    (2d)

n Slice away 2 dimens 
to form isosurface:
– Faces    (2d)
– Edges   (1d)
– Vertices (0d)
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Yes, this is crazy…

n Rectilinear mesh stores values only
n Simplicial stores coords & neighbors

n Allows local refinement, so we try anyway…

30
244

8
51

2
15

Simp/vertex
Words/vertex

4d: Pentatope3d: Tetrahedron2d: Triangle
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Mesh Topology

Pentamesh 
n each tetrahedron bounds 

two adj. pentatopes
n each triangle is in two 

tetrahedra per pentatope
n each triangle has a cycle 

of pentatopes, each 
sharing a tetrahedron 
with the next pentatope

Isosurface
n each edge bounds 

two adjacent polygons
n each vertex is in two 

edges per polygon
n each vertex has a cycle 

of polygons, each 
sharing an edge 
with the next polygon
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Mesh Topology

Pentamesh 
n each tetrahedron bounds 

two adj. pentatopes
n each triangle is in two 

tetrahedra per pentatope
n each triangle has a cycle 

of pentatopes, each 
sharing a tetrahedron 
with the next pentatope

Isosurface
n each edge bounds 

two adjacent polygons
n each vertex is in two 

edges per polygon
n each vertex has a cycle 

of polygons, each 
sharing an edge 
with the next polygon
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Mesh Topology

Pentamesh 
n each tetrahedron bounds 

two adj. pentatopes
n each triangle is in two 

tetrahedra per pentatope
n each triangle has a cycle 

of pentatopes, each 
sharing a tetrahedron 
with the next pentatope

Isosurface
n each edge bounds 

two adjacent polygons
n each vertex is in two 

edges per polygon
n each vertex has a cycle 

of polygons, each 
sharing an edge 
with the next polygon
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Corner table data structure

Don’t need facial lattice

n Pentatope stored in table as 
block of 5 corners in lex-min 
order having positive orientation

n Store opposite(corner) & 
vertex(corner) pointers
opposite(12345) = 12356; 
opposite(12356) = 12345;

n Data structure supports walk 
around fixed triangle without 
search

4

3

2

1

5

6



May 2002 CARGO

Corner table data structure

Don’t need facial lattice

n Pentatope stored in table as 
block of 5 corners in lex-min 
order having positive orientation

n Store opposite(corner) & 
vertex(corner) pointers
opposite(12345) = 21357; 
opposite(21357) = 12345;

n Data structure supports walk 
around fixed triangle without 
search
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Counting contours [β0]

n Project silhouette edges
onto (p,t) control plane

n Color the arrangement 
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Evolution of contour trees?

n Would like a family of contour trees 
parameterized by time t.

n Can find families of join & split trees.

n Morse theory with two parameters?
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Applying computational topology

n Illustrating our thesis: contour trees in 3D
n Time-varying volume visualization

– Sample data sets: scientific & eng. simulation
– Prototype interface: contour spectra & iso-surfaces

n Pentatope meshes
– A data structure supporting iso-surfaces 
– Implementing the incremental flip algorithm

• Arithmetic complexity
• Handling degeneracies
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A “Safari” scenario
http://www.cs.unc.edu/~compgeom

1. Compute server outputs (hierarchical) pentamesh
2. Visualization server computes control plane image
3. User chooses (p,t)
4. Vis server sends initial isosurface/pentatopes
5. User views isosurface and moves to nearby (p’, t’)
6. Vis server sends updates to isosurf/pentas
7. User rotates or zooms current isosurface
8. Vis server sends refinements to isosurf/pentas
9. User continues with 3, 4, or 7.
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Computing pentatope meshes

n Corner-based data structure 
n Compute 4d Delaunay by incremental 

algorithm of Edelsbrunner and Shah [ES96]
n Exact arithmetic in IEEE doubles [P91]
n Degeneracy handling extending [ADS99]
n Code to be released when validation is 

complete
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Incremental Delaunay [ES96]

n Start with an empty mesh M
n Add points p1 … pn in order, update M 

to preserve the Empty Sphere property
n Flip operations suffice for the update
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Empty Sphere determinant

n Delaunay: Every simplex has an Empty 
Sphere property w.r.t. neighbor points
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Arithmetic complexity
n InSphere is a dot product with plane tests we 

must do anyway…
n 6-fold precision required, but only here
n 4-fold precision sufficient everywhere else
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Degeneracy handling

n Infinitesimal linear perturbation of points 
removes all InSphere degeneracies:

– Linear terms drop out of ODs
– Squared terms with different εs appear in last 

column of InSphere determinant (reuse minors)
– Sign determined by sign of lowest ε term
– Points don’t simultaneously lie on a sphere and a 

plane, so some determinant is non-zero.

),,,,1( ztzytyxtxtttzzzyyyxxx pppppppppppp εεεεεεε +++++++→
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Incremental Delaunay [ES96]

n Start with bounding mesh M (at ∞)
n For each point p

– Locate p in pentatope π∈M
– Perform 1-5 flip on p,π
– For each new pentatope using p

• If opposite has p in Sphere
– Do “cone test” with pentatope planes
– Perform indicated flip
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Measured computational effort
n Tests on 333Mhz Pentium II laptop 
n 10,000 points produced 297,016 pentatopes.
n Computation time of 23.38 secs includes

– 2,079,850 flips
– 3,495,754 inSphere tests
– 13,983,016 plane tests
– 3,535,307 pentatopes created
– 2,851,898 plane equations (of 17,676,535).

n Verification time of 4.32 secs includes
– 1,485,080 inSphere tests
– 7,425,400 plane tests
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Coming:

n Graphs of 
error as a 
function of  
# of points

n Refinement 
techniques
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Thanks to 
n Hamish Carr (UBC)
n Ajith Mascarenhas (UNC)
n Lutz Kettner (now MPI Saarbruecken)

n Lawrence Livermore National Labs

n NSF/DARPA CARGO

n http://www.cs.unc.edu/~compgeom


